Next: cw-weave-models, Previous: cw-optimal-search-setup, Up: Directory Index [Contents][Index]
Calculate sensitivty in terms of the root-mean-square SNR for a population of constant-SNR signals, and for a chi^2 detection statistic
detectable r.m.s. SNR (per segment)
terms of the second factor of the expression
false alarm probability (per template)
false dismissal probability
number of segments
degrees of freedom per segment
Calculate sensitivty in terms of the root-mean-square SNR for a population of isotropically distributed and oriented signals, and for a chi^2 detection statistic
detectable r.m.s. SNR (per segment)
number of iterations needed to solve for rhoh
false alarm probability (per template)
false dismissal probability
number of segments
degrees of freedom per segment
Implements an expression used in analytic sensitivity estimation for a chi^2 detection statistic
detectable r.m.s. SNR (per segment)
terms of the second factor of the expression
normalised false alarm threshold
false dismissal probability
number of segments
degrees of freedom per segment
assert(AnalyticSensitivitySNRExpr(0.01, 0.1, 100, 4), 0.6312, 1e-3)
Calculate the antenna pattern of an interferometer
antenna pattern
detector null vectors in equatorial coordinates
polarisation null vectors in equatorial coordinates
angle between interferometer arms in radians
assert(AntennaPattern([1,0,0], [0,1,0], [0.5,0.5,0], [0.5,-0.5,0], pi/2), [0,0,0], 1e-3)
Parses random parameters specs, which may be either
random parameter generator
random parameter spec
assert(isstruct(CreateRandParam([0, 5.5], [2.2, 7])))
Estimate detection probability for given fixed sensitivity-depth signal Depth = sqrt(S)/h0
Nseg
number of StackSlide segments
Tdata
total amount of data used, in seconds (Note: Tdata = Nsft * Tsft, where ’Nsft’ is the total number of SFTs of length ’Tsft’ used in the search, from all detectors)
misHist
mismatch histogram, produced using Hist()
pFA
false-alarm probability (-ies) *per template* (can be a vector)
avg2Fth
ALTERNATIVE to pFA: specify average-2F threshold directly (can be a vector)
detectors
CSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)
alpha
source right ascension in radians (default: all-sky = [0, 2pi])
delta
source declination (default: all-sky = [-pi/2, pi/2])
Depth
fixed sensitivity-depth of signal population (can be a vector)
detweights
detector weights on S_h to use (default: uniform weights)
Return parameters of various gravitational-wave interferometers
detector’s longitude in radians
sine of the detector’s latitude
detector orientation in radians
angle between interferometer arms in radians
identifier of a gravitational-wave interferometer:
LIGO Hanford
LIGO Livingston
VIRGO
GEO
KAGRA
assert(DetectorLocations("H"))
assert(DetectorLocations("L"))
assert(DetectorLocations("V"))
Calculate the vectors along which an interferometric detector is insensitive to gravitational waves
detector null vectors in equatorial coordinates
local sidereal time at the detector
sine of the detector’s latitude
detector orientation in radians
[a,b] = DetectorNullVectors(0.0, 0.0, pi/2); assert(a, [0;1;0], 1e-3) assert(b, [0;0;1], 1e-3)
Generates values for random parameters, given a generator
random parameter generator
number of values to generate
values of random parameter
gsl; [a, b] = NextRandParam(CreateRandParam([0, 5.5], [2.2, 7]), 100); assert(0 <= min(a) && max(a) <= 5.5); assert(2.2 <= min(b) && max(b) <= 7);
Calculate the vectors along which a pure plus/cross gravitational wave create no space-time peturbation
plus polarisation null vectors in equatorial coordinates
cross polarisation null vectors in equatorial coordinates
source right ascension in radians
sine of source declination
source polarisation angle in radians
[xp, yp, xx, yx] = PolarisationNullVectors(0, 0, pi/2); assert(xp, [0; -1/sqrt(2); 1/sqrt(2)], 1e-3); assert(yp, [0; 1/sqrt(2); 1/sqrt(2)], 1e-3); assert(xx, [0; 0; 1], 1e-3); assert(yx, [0; 1; 0], 1e-3);
Calculate sensitivity in terms of the sensitivity depth.
SensitivityDepth
calculated false dismissal probability
pd
false dismissal probability
Ns
number of segments
Tdata
total amount of data used in seconds
Rsqr
histogram of SNR "geometric factor" R^2,
computed using SqrSNRGeometricFactorHist()
,
or scalar giving mean value of R^2
stat
detection statistic, one of:
ChiSqr
, opt, val, …}chi^2 statistic, e.g. the F-statistic, with options:
false alarm probability per template
false alarm threshold
degrees of freedom per segment (default: 4)
use normal approximation to chi^2 (default: false)
HoughFstat
, opt, val, …}Hough on the F-statistic, with options:
false alarm probability per template
number count false alarm threshold
F-statistic threshold per segment
use zeroth-order approximation (default: false)
prog
show progress updates
misHist
mismatch histograms (default: no mismatch)
Rsqr = SqrSNRGeometricFactorHist;
Estimate Hough-on-Fstat sensitivity depth, defined as
sensDepth = sqrt(Sdata)/h0,
where
an estimate of the noise PSD over all the data used (which should be computed as the harmonic mean over all the SFTs from all detectors)
the smallest detectable GW amplitude at the given false-alarm (pFA) and false-dismissal probability (pFD)
Nseg
number of Hough segments
Tdata
total amount of data used, in seconds (Note: Tdata = Nsft * Tsft, where Nsft is the total number of SFTs of length Tsft used in the search, from all detectors)
misHist
mismatch histogram, produced using Hist()
pFD
false-dismissal probability = 1 - pDet
pFA
false-alarm probability (-ies) *per template* (can be a vector)
Fth
F-stat threshold (on F, not 2F!) in each segment for "pixel" selection
detectors
CSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)
detweights
detector weights on S_h to use (default: uniform weights)
alpha
source right ascension in radians (default: all-sky)
delta
source declination (default: all-sky)
Nseg = 20; Tdata = 60*3600*Nseg; misHist = createDeltaHist(0.1); pFD = 0.1; pFA = [1e-10; 1e-8; 1e-6]; Fth = 2.5; dets = "H1,L1"; sigma = SensitivityDepthHoughF("Nseg", Nseg, "Tdata", Tdata, "misHist", misHist, "pFD", pFD, "pFA", pFA, "Fth", Fth, "detectors", dets); assert(max(abs(sigma - [27.442; 35.784; 42.490])) < 0.05);
Estimate StackSlide sensitivity depth, defined as
sensDepth = sqrt(Sdata)/h0,
where
an estimate of the noise PSD over all the data used (which should be computed as the harmonic mean over all the SFTs from all detectors)
the smallest detectable GW amplitude at the given false-alarm (pFA) and false-dismissal probability (pFD)
Nseg
number of StackSlide segments (every row is one trial, every column is for one stage )
Tdata
total amount of data used, in seconds can be a row vector for different amounts of data in each stage or a column vector for different trial setups or matrix for both combined (Note: Tdata = Nsft * Tsft, where Nsft is the total number of SFTs of length Tsft used in the search, from all detectors)
## two different setups with 5 stages (5 columns, 2 rows) Nseg = [90,90,44,44,22;100,100,50,50,25] ## different for every stage but the same for every trial Tdata = [ NSFT*1800, NSFT*900, NSFT*3600, NSFT*1800, NSFT*1800] ## as we have 5 stages there must be five thrqesholds avg2Fth = [6.109,6.109,7.38,8.82,15] ## we also need one mismatch histogram per stage misHist = {mismatch1, mismatch2, mismatch3, mismatch4, mismatch5} ## a column with two false dimissal probabilitites, one for each trial pFD = [0.1,0.05]'
misHist
cell array of mismatch histograms, one for every stage, produced using Hist()
pFD
false-dismissal probability = 1 - pDet = 1 - ’confidence’
pFA
false-alarm probability (-ies) *per template* (every row is one trial, every column is for one stage )
avg2Fth
ALTERNATIVE to pFA: average-2F threshold (every row is one trial, every column is for one stage )
detectors
CSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)
detweights
detector weights on S_h to use (default: uniform weights)
alpha
source right ascension in radians (default: all-sky)
delta
source declination (default: all-sky)
cosi
orientation angle (default: isotropic average)
psi
polarization angle (default: isotropic average)
nonax
, cosi )nonax
)Calculate the amplitudes of each polarisation from a signal emitted by a particular emission mechanism: "nonax": nonaxisymmetric distortion at 2f
signal polarisation amplitudes
normalisation constant for R^2
cosine of the inclination angle
assert(SignalAmplitudes("nonax"), 4/25)
Calculate a histogram of the squared SNR "geometric factor", R^2
histogram of R^2
T
observation time in sidereal days (default: inf)
detectors
detectors to use; either e.g. "H1,L1" or "HL" (default: L1)
detweights
detector weights on S_h to use (default: uniform weights)
alpha
source right ascension in radians (default: all-sky)
sdelta
sine of source declination (default: all-sky)
psi
source orientation in radians (default: all)
cosi
cosine of inclination angle (default: all)
emission
emission mechanism (default: nonax)
zmstime
sidereal time of the zero meridian at observation mid-point
hist_dx
histogram bin size
hist_N
number of histogram points to calculate at a time
hist_err
histogram error target
use_cache
if true [default], use a cached version of the histogram if available for the given input parameters
Rsqr0 = SqrSNRGeometricFactorHist("use_cache", false); ## stores results in cache Rsqr0c = SqrSNRGeometricFactorHist("use_cache", true ); assert ( isequal ( Rsqr0, Rsqr0c ) );
Calculate the time-averaged squared antenna pattern of an interferometer
time-averaged squared antenna pattern
detector null vectors at observation mid-point, in equatorial coordinates
polarisation null vectors in equatorial coordinates
angle between interferometer arms in radians
product of angular sidereal frequency and observation time
maximum sinc term to add up (0 to 4; default is 4)
assert(TimeAvgSqrAntennaPattern([1;0;0], [0;1;0], [0;0.5;0.5], [0;0.5;-0.5], pi/2, inf), 0.03125)
Next: cw-weave-models, Previous: cw-optimal-search-setup, Up: Directory Index [Contents][Index]