Next: , Previous: , Up: Directory Index   [Contents][Index]


2.9 cw-sensitivity

Function File: [ rhob, tms ] = AnalyticSensitivityConstSNRChiSqr ( paNt, pd, Ns, nu )

Calculate sensitivty in terms of the root-mean-square SNR for a population of constant-SNR signals, and for a chi^2 detection statistic

Arguments

rhob

detectable r.m.s. SNR (per segment)

tms

terms of the second factor of the expression

paNt

false alarm probability (per template)

pd

false dismissal probability

Ns

number of segments

nu

degrees of freedom per segment

Function File: [ rhoh, iter ] = AnalyticSensitivitySNRChiSqr ( paNt, pd, Ns, nu )

Calculate sensitivty in terms of the root-mean-square SNR for a population of isotropically distributed and oriented signals, and for a chi^2 detection statistic

Arguments

rhoh

detectable r.m.s. SNR (per segment)

iter

number of iterations needed to solve for rhoh

paNt

false alarm probability (per template)

pd

false dismissal probability

Ns

number of segments

nu

degrees of freedom per segment

Function File: [ rho, tms ] = AnalyticSensitivitySNRExpr ( za, pd, Ns, nu )

Implements an expression used in analytic sensitivity estimation for a chi^2 detection statistic

Arguments

rho

detectable r.m.s. SNR (per segment)

tms

terms of the second factor of the expression

za

normalised false alarm threshold

pd

false dismissal probability

Ns

number of segments

nu

degrees of freedom per segment

Examples

assert(AnalyticSensitivitySNRExpr(0.01, 0.1, 100, 4), 0.6312, 1e-3)
Function File: F = AntennaPattern ( a, b, x, y, zeta )

Calculate the antenna pattern of an interferometer

Arguments

F

antenna pattern

a
b

detector null vectors in equatorial coordinates

x
y

polarisation null vectors in equatorial coordinates

zeta

angle between interferometer arms in radians

Examples

assert(AntennaPattern([1,0,0], [0,1,0], [0.5,0.5,0], [0.5,-0.5,0], pi/2), [0,0,0], 1e-3)
Function File: rng = CreateRandParam ( p, p, … )

Parses random parameters specs, which may be either

Arguments

rng

random parameter generator

p

random parameter spec

Examples

assert(isstruct(CreateRandParam([0, 5.5], [2.2, 7])))
Function File: pDET = DetectionProbabilityStackSlide ( opt, val, … )

Estimate detection probability for given fixed sensitivity-depth signal Depth = sqrt(S)/h0

Options

Nseg

number of StackSlide segments

Tdata

total amount of data used, in seconds (Note: Tdata = Nsft * Tsft, where ’Nsft’ is the total number of SFTs of length ’Tsft’ used in the search, from all detectors)

misHist

mismatch histogram, produced using Hist()

pFA

false-alarm probability (-ies) *per template* (can be a vector)

avg2Fth

ALTERNATIVE to pFA: specify average-2F threshold directly (can be a vector)

detectors

CSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)

alpha

source right ascension in radians (default: all-sky = [0, 2pi])

delta

source declination (default: all-sky = [-pi/2, pi/2])

Depth

fixed sensitivity-depth of signal population (can be a vector)

detweights

detector weights on S_h to use (default: uniform weights)

Examples

See the tutorial on SensitivityDepthStackSlide().

Function File: [ L, slambda, gamma, zeta ] = DetectorLocations ( detID )

Return parameters of various gravitational-wave interferometers

Arguments

L

detector’s longitude in radians

slambda

sine of the detector’s latitude

gamma

detector orientation in radians

zeta

angle between interferometer arms in radians

detID

identifier of a gravitational-wave interferometer:

H

LIGO Hanford

L

LIGO Livingston

V

VIRGO

G

GEO

K

KAGRA

Examples

assert(DetectorLocations("H"))
assert(DetectorLocations("L"))
assert(DetectorLocations("V"))
Function File: [ a, b ] = DetectorNullVectors ( Phis, slambda, gamma )

Calculate the vectors along which an interferometric detector is insensitive to gravitational waves

Arguments

a
b

detector null vectors in equatorial coordinates

Phis

local sidereal time at the detector

slambda

sine of the detector’s latitude

gamma

detector orientation in radians

Examples

[a,b] = DetectorNullVectors(0.0, 0.0, pi/2);
assert(a, [0;1;0], 1e-3)
assert(b, [0;0;1], 1e-3)
Function File: [ v, v, … ] = NextRandParam ( rng, N )

Generates values for random parameters, given a generator

Arguments

rng

random parameter generator

N

number of values to generate

v

values of random parameter

Examples

gsl;
[a, b] = NextRandParam(CreateRandParam([0, 5.5], [2.2, 7]), 100);
assert(0 <= min(a) && max(a) <= 5.5);
assert(2.2 <= min(b) && max(b) <= 7);
Function File: [ xp, yp, xx, yx ] = PolarisationNullVectors ( alpha, sdelta, psi )

Calculate the vectors along which a pure plus/cross gravitational wave create no space-time peturbation

Arguments

xp
yp

plus polarisation null vectors in equatorial coordinates

xx
yx

cross polarisation null vectors in equatorial coordinates

alpha

source right ascension in radians

sdelta

sine of source declination

psi

source polarisation angle in radians

Examples

[xp, yp, xx, yx] = PolarisationNullVectors(0, 0, pi/2);
assert(xp, [0; -1/sqrt(2); 1/sqrt(2)], 1e-3);
assert(yp, [0; 1/sqrt(2); 1/sqrt(2)], 1e-3);
assert(xx, [0; 0; 1], 1e-3);
assert(yx, [0; 1; 0], 1e-3);
Function File: [ Depth, pd_Depth ] = SensitivityDepth ( opt, val, … )

Calculate sensitivity in terms of the sensitivity depth.

Arguments

Depth

SensitivityDepth

pd_Depth

calculated false dismissal probability

Options

pd

false dismissal probability

Ns

number of segments

Tdata

total amount of data used in seconds

Rsqr

histogram of SNR "geometric factor" R^2, computed using SqrSNRGeometricFactorHist(), or scalar giving mean value of R^2

stat

detection statistic, one of:

{ChiSqr, opt, val, …}

chi^2 statistic, e.g. the F-statistic, with options:

paNt

false alarm probability per template

sa

false alarm threshold

dof

degrees of freedom per segment (default: 4)

norm

use normal approximation to chi^2 (default: false)

{HoughFstat, opt, val, …}

Hough on the F-statistic, with options:

paNt

false alarm probability per template

nth

number count false alarm threshold

Fth

F-statistic threshold per segment

zero

use zeroth-order approximation (default: false)

prog

show progress updates

misHist

mismatch histograms (default: no mismatch)

Examples

Rsqr = SqrSNRGeometricFactorHist;
Function File: sensDepth = SensitivityDepthHoughF ( opt, val, … )

Estimate Hough-on-Fstat sensitivity depth, defined as

sensDepth = sqrt(Sdata)/h0,

where

Sdata

an estimate of the noise PSD over all the data used (which should be computed as the harmonic mean over all the SFTs from all detectors)

h0

the smallest detectable GW amplitude at the given false-alarm (pFA) and false-dismissal probability (pFD)

Options

Nseg

number of Hough segments

Tdata

total amount of data used, in seconds (Note: Tdata = Nsft * Tsft, where Nsft is the total number of SFTs of length Tsft used in the search, from all detectors)

misHist

mismatch histogram, produced using Hist()

pFD

false-dismissal probability = 1 - pDet

pFA

false-alarm probability (-ies) *per template* (can be a vector)

Fth

F-stat threshold (on F, not 2F!) in each segment for "pixel" selection

detectors

CSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)

detweights

detector weights on S_h to use (default: uniform weights)

alpha

source right ascension in radians (default: all-sky)

delta

source declination (default: all-sky)

Examples

Nseg = 20;
Tdata = 60*3600*Nseg;
misHist = createDeltaHist(0.1);
pFD = 0.1;
pFA = [1e-10; 1e-8; 1e-6];
Fth = 2.5;
dets = "H1,L1";
sigma = SensitivityDepthHoughF("Nseg", Nseg, "Tdata", Tdata, "misHist", misHist, "pFD", pFD, "pFA", pFA, "Fth", Fth, "detectors", dets);
assert(max(abs(sigma - [27.442; 35.784; 42.490])) < 0.05);
Function File: sensDepth = SensitivityDepthStackSlide ( opt, val, … )

Estimate StackSlide sensitivity depth, defined as

sensDepth = sqrt(Sdata)/h0,

where

Sdata

an estimate of the noise PSD over all the data used (which should be computed as the harmonic mean over all the SFTs from all detectors)

h0

the smallest detectable GW amplitude at the given false-alarm (pFA) and false-dismissal probability (pFD)

Options

Nseg

number of StackSlide segments (every row is one trial, every column is for one stage )

Tdata

total amount of data used, in seconds can be a row vector for different amounts of data in each stage or a column vector for different trial setups or matrix for both combined (Note: Tdata = Nsft * Tsft, where Nsft is the total number of SFTs of length Tsft used in the search, from all detectors)

## two different setups with 5 stages (5 columns, 2 rows)
Nseg = [90,90,44,44,22;100,100,50,50,25]
## different for every stage but the same for every trial
Tdata = [ NSFT*1800, NSFT*900, NSFT*3600, NSFT*1800, NSFT*1800]
## as we have 5 stages there must be five thrqesholds
avg2Fth = [6.109,6.109,7.38,8.82,15]
## we also need one mismatch histogram per stage
misHist = {mismatch1, mismatch2, mismatch3, mismatch4, mismatch5}
## a column with two false dimissal probabilitites, one for each trial
pFD = [0.1,0.05]'
misHist

cell array of mismatch histograms, one for every stage, produced using Hist()

pFD

false-dismissal probability = 1 - pDet = 1 - ’confidence’

pFA

false-alarm probability (-ies) *per template* (every row is one trial, every column is for one stage )

avg2Fth

ALTERNATIVE to pFA: average-2F threshold (every row is one trial, every column is for one stage )

detectors

CSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)

detweights

detector weights on S_h to use (default: uniform weights)

alpha

source right ascension in radians (default: all-sky)

delta

source declination (default: all-sky)

cosi

orientation angle (default: isotropic average)

psi

polarization angle (default: isotropic average)

Examples

See the tutorial on SensitivityDepthStackSlide().

Function File: [ ap, ax ] = SignalAmplitudes ( nonax, cosi )
Function File: apxnorm = SignalAmplitudes ( nonax )

Calculate the amplitudes of each polarisation from a signal emitted by a particular emission mechanism: "nonax": nonaxisymmetric distortion at 2f

Arguments

ap
ax

signal polarisation amplitudes

apxnorm

normalisation constant for R^2

cosi

cosine of the inclination angle

Examples

assert(SignalAmplitudes("nonax"), 4/25)
Function File: Rsqr = SqrSNRGeometricFactorHist ( opt, val, … )

Calculate a histogram of the squared SNR "geometric factor", R^2

Arguments

Rsqr

histogram of R^2

Options

T

observation time in sidereal days (default: inf)

detectors

detectors to use; either e.g. "H1,L1" or "HL" (default: L1)

detweights

detector weights on S_h to use (default: uniform weights)

alpha

source right ascension in radians (default: all-sky)

sdelta

sine of source declination (default: all-sky)

psi

source orientation in radians (default: all)

cosi

cosine of inclination angle (default: all)

emission

emission mechanism (default: nonax)

zmstime

sidereal time of the zero meridian at observation mid-point

hist_dx

histogram bin size

hist_N

number of histogram points to calculate at a time

hist_err

histogram error target

use_cache

if true [default], use a cached version of the histogram if available for the given input parameters

Examples

Rsqr0  = SqrSNRGeometricFactorHist("use_cache", false);	## stores results in cache
Rsqr0c = SqrSNRGeometricFactorHist("use_cache", true );
assert ( isequal ( Rsqr0, Rsqr0c ) );
Function File: Fsqr_t = TimeAvgSqrAntennaPattern ( a0, b0, x, y, zeta, OmegaT, nmax )

Calculate the time-averaged squared antenna pattern of an interferometer

Arguments

Fsqr_t

time-averaged squared antenna pattern

a0
b0

detector null vectors at observation mid-point, in equatorial coordinates

x
y

polarisation null vectors in equatorial coordinates

zeta

angle between interferometer arms in radians

OmegaT

product of angular sidereal frequency and observation time

nmax

maximum sinc term to add up (0 to 4; default is 4)

Examples

assert(TimeAvgSqrAntennaPattern([1;0;0], [0;1;0], [0;0.5;0.5], [0;0.5;-0.5], pi/2, inf), 0.03125)

Next: , Previous: , Up: Directory Index   [Contents][Index]