Next: cw-weave-models, Previous: cw-optimal-search-setup, Up: Directory Index [Contents][Index]
Calculate sensitivty in terms of the root-mean-square SNR for a population of constant-SNR signals, and for a chi^2 detection statistic
detectable r.m.s. SNR (per segment)
terms of the second factor of the expression
false alarm probability (per template)
false dismissal probability
number of segments
degrees of freedom per segment
Calculate sensitivty in terms of the root-mean-square SNR for a population of isotropically distributed and oriented signals, and for a chi^2 detection statistic
detectable r.m.s. SNR (per segment)
number of iterations needed to solve for rhoh
false alarm probability (per template)
false dismissal probability
number of segments
degrees of freedom per segment
Implements an expression used in analytic sensitivity estimation for a chi^2 detection statistic
detectable r.m.s. SNR (per segment)
terms of the second factor of the expression
normalised false alarm threshold
false dismissal probability
number of segments
degrees of freedom per segment
assert(AnalyticSensitivitySNRExpr(0.01, 0.1, 100, 4), 0.6312, 1e-3)
Calculate the antenna pattern of an interferometer
antenna pattern
detector null vectors in equatorial coordinates
polarisation null vectors in equatorial coordinates
angle between interferometer arms in radians
assert(AntennaPattern([1,0,0], [0,1,0], [0.5,0.5,0], [0.5,-0.5,0], pi/2), [0,0,0], 1e-3)
Parses random parameters specs, which may be either
random parameter generator
random parameter spec
assert(isstruct(CreateRandParam([0, 5.5], [2.2, 7])))
Estimate detection probability for given fixed sensitivity-depth signal Depth = sqrt(S)/h0
Nsegnumber of StackSlide segments
Tdatatotal amount of data used, in seconds (Note: Tdata = Nsft * Tsft, where ’Nsft’ is the total number of SFTs of length ’Tsft’ used in the search, from all detectors)
misHistmismatch histogram, produced using Hist()
pFAfalse-alarm probability (-ies) *per template* (can be a vector)
avg2FthALTERNATIVE to pFA: specify average-2F threshold directly (can be a vector)
detectorsCSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)
alphasource right ascension in radians (default: all-sky = [0, 2pi])
deltasource declination (default: all-sky = [-pi/2, pi/2])
Depthfixed sensitivity-depth of signal population (can be a vector)
detweightsdetector weights on S_h to use (default: uniform weights)
Return parameters of various gravitational-wave interferometers
detector’s longitude in radians
sine of the detector’s latitude
detector orientation in radians
angle between interferometer arms in radians
identifier of a gravitational-wave interferometer:
LIGO Hanford
LIGO Livingston
VIRGO
GEO
KAGRA
assert(DetectorLocations("H"))
assert(DetectorLocations("L"))
assert(DetectorLocations("V"))
Calculate the vectors along which an interferometric detector is insensitive to gravitational waves
detector null vectors in equatorial coordinates
local sidereal time at the detector
sine of the detector’s latitude
detector orientation in radians
[a,b] = DetectorNullVectors(0.0, 0.0, pi/2); assert(a, [0;1;0], 1e-3) assert(b, [0;0;1], 1e-3)
Generates values for random parameters, given a generator
random parameter generator
number of values to generate
values of random parameter
gsl; [a, b] = NextRandParam(CreateRandParam([0, 5.5], [2.2, 7]), 100); assert(0 <= min(a) && max(a) <= 5.5); assert(2.2 <= min(b) && max(b) <= 7);
Calculate the vectors along which a pure plus/cross gravitational wave create no space-time peturbation
plus polarisation null vectors in equatorial coordinates
cross polarisation null vectors in equatorial coordinates
source right ascension in radians
sine of source declination
source polarisation angle in radians
[xp, yp, xx, yx] = PolarisationNullVectors(0, 0, pi/2); assert(xp, [0; -1/sqrt(2); 1/sqrt(2)], 1e-3); assert(yp, [0; 1/sqrt(2); 1/sqrt(2)], 1e-3); assert(xx, [0; 0; 1], 1e-3); assert(yx, [0; 1; 0], 1e-3);
Calculate sensitivity in terms of the sensitivity depth.
SensitivityDepth
calculated false dismissal probability
pdfalse dismissal probability
Nsnumber of segments
Tdatatotal amount of data used in seconds
Rsqrhistogram of SNR "geometric factor" R^2,
computed using SqrSNRGeometricFactorHist(),
or scalar giving mean value of R^2
statdetection statistic, one of:
ChiSqr, opt, val, …}chi^2 statistic, e.g. the F-statistic, with options:
false alarm probability per template
false alarm threshold
degrees of freedom per segment (default: 4)
use normal approximation to chi^2 (default: false)
HoughFstat, opt, val, …}Hough on the F-statistic, with options:
false alarm probability per template
number count false alarm threshold
F-statistic threshold per segment
use zeroth-order approximation (default: false)
progshow progress updates
misHistmismatch histograms (default: no mismatch)
Rsqr = SqrSNRGeometricFactorHist;
Estimate Hough-on-Fstat sensitivity depth, defined as
sensDepth = sqrt(Sdata)/h0,
where
an estimate of the noise PSD over all the data used (which should be computed as the harmonic mean over all the SFTs from all detectors)
the smallest detectable GW amplitude at the given false-alarm (pFA) and false-dismissal probability (pFD)
Nsegnumber of Hough segments
Tdatatotal amount of data used, in seconds (Note: Tdata = Nsft * Tsft, where Nsft is the total number of SFTs of length Tsft used in the search, from all detectors)
misHistmismatch histogram, produced using Hist()
pFDfalse-dismissal probability = 1 - pDet
pFAfalse-alarm probability (-ies) *per template* (can be a vector)
FthF-stat threshold (on F, not 2F!) in each segment for "pixel" selection
detectorsCSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)
detweightsdetector weights on S_h to use (default: uniform weights)
alphasource right ascension in radians (default: all-sky)
deltasource declination (default: all-sky)
Nseg = 20;
Tdata = 60*3600*Nseg;
misHist = createDeltaHist(0.1);
pFD = 0.1;
pFA = [1e-10; 1e-8; 1e-6];
Fth = 2.5;
dets = "H1,L1";
sigma = SensitivityDepthHoughF("Nseg", Nseg, "Tdata", Tdata, "misHist", misHist, "pFD", pFD, "pFA", pFA, "Fth", Fth, "detectors", dets);
assert(max(abs(sigma - [27.442; 35.784; 42.490])) < 0.05);
Estimate StackSlide sensitivity depth, defined as
sensDepth = sqrt(Sdata)/h0,
where
an estimate of the noise PSD over all the data used (which should be computed as the harmonic mean over all the SFTs from all detectors)
the smallest detectable GW amplitude at the given false-alarm (pFA) and false-dismissal probability (pFD)
Nsegnumber of StackSlide segments (every row is one trial, every column is for one stage )
Tdatatotal amount of data used, in seconds can be a row vector for different amounts of data in each stage or a column vector for different trial setups or matrix for both combined (Note: Tdata = Nsft * Tsft, where Nsft is the total number of SFTs of length Tsft used in the search, from all detectors)
## two different setups with 5 stages (5 columns, 2 rows)
Nseg = [90,90,44,44,22;100,100,50,50,25]
## different for every stage but the same for every trial
Tdata = [ NSFT*1800, NSFT*900, NSFT*3600, NSFT*1800, NSFT*1800]
## as we have 5 stages there must be five thrqesholds
avg2Fth = [6.109,6.109,7.38,8.82,15]
## we also need one mismatch histogram per stage
misHist = {mismatch1, mismatch2, mismatch3, mismatch4, mismatch5}
## a column with two false dimissal probabilitites, one for each trial
pFD = [0.1,0.05]'
misHistcell array of mismatch histograms, one for every stage, produced using Hist()
pFDfalse-dismissal probability = 1 - pDet = 1 - ’confidence’
pFAfalse-alarm probability (-ies) *per template* (every row is one trial, every column is for one stage )
avg2FthALTERNATIVE to pFA: average-2F threshold (every row is one trial, every column is for one stage )
detectorsCSV list of detectors to use ("H1"=Hanford, "L1"=Livingston, "V1"=Virgo, ...)
detweightsdetector weights on S_h to use (default: uniform weights)
alphasource right ascension in radians (default: all-sky)
deltasource declination (default: all-sky)
cosiorientation angle (default: isotropic average)
psipolarization angle (default: isotropic average)
nonax, cosi )nonax )Calculate the amplitudes of each polarisation from a signal emitted by a particular emission mechanism: "nonax": nonaxisymmetric distortion at 2f
signal polarisation amplitudes
normalisation constant for R^2
cosine of the inclination angle
assert(SignalAmplitudes("nonax"), 4/25)
Calculate a histogram of the squared SNR "geometric factor", R^2
histogram of R^2
Tobservation time in sidereal days (default: inf)
detectorsdetectors to use; either e.g. "H1,L1" or "HL" (default: L1)
detweightsdetector weights on S_h to use (default: uniform weights)
alphasource right ascension in radians (default: all-sky)
sdeltasine of source declination (default: all-sky)
psisource orientation in radians (default: all)
cosicosine of inclination angle (default: all)
emissionemission mechanism (default: nonax)
zmstimesidereal time of the zero meridian at observation mid-point
hist_dxhistogram bin size
hist_Nnumber of histogram points to calculate at a time
hist_errhistogram error target
use_cacheif true [default], use a cached version of the histogram if available for the given input parameters
Rsqr0  = SqrSNRGeometricFactorHist("use_cache", false);	## stores results in cache
Rsqr0c = SqrSNRGeometricFactorHist("use_cache", true );
assert ( isequal ( Rsqr0, Rsqr0c ) );
Calculate the time-averaged squared antenna pattern of an interferometer
time-averaged squared antenna pattern
detector null vectors at observation mid-point, in equatorial coordinates
polarisation null vectors in equatorial coordinates
angle between interferometer arms in radians
product of angular sidereal frequency and observation time
maximum sinc term to add up (0 to 4; default is 4)
assert(TimeAvgSqrAntennaPattern([1;0;0], [0;1;0], [0;0.5;0.5], [0;0.5;-0.5], pi/2, inf), 0.03125)
Next: cw-weave-models, Previous: cw-optimal-search-setup, Up: Directory Index [Contents][Index]