Previous: , Up: Continuous-Wave Functions   [Contents][Index]


1.2.5 OptimalSolution4StackSlide_v2()

OptimalSolution4StackSlide_v2() finds the optimal setup of a continuous gravitational-wave search, under the constraint of fixed computational cost.

The computational cost of a continuous gravitational-wave search is given by a function; the following example is based on the Einstein@Home search for Cassiopeia A using LIGO S6 data:

octave> UnitsConstants;
octave> costFuns = CostFunctionsDirected("fmin", 120, "fmax", 1000, "tau_min", 300 * YRSID_SI, "detectors", "H1,L1", "coh_duty", 0.53375, "resampling", false, "coh_c0_demod", 7.4e-8 / 1800, "inc_c0", 4.7e-9, "lattice", "Zn", "boundaryType", "EaHCasA");
octave> cost0 = 3.1451 * EM2014;
octave> TobsMax = 256.49 * DAYS;

Given a starting guess:

octave> refParams.Nseg = 10;
octave> refParams.Tseg = 24 * 86400;
octave> refParams.mCoh = 0.5;
octave> refParams.mInc = 0.5;

OptimalSolution4StackSlide_v2() iteratively converges to the optimal solution under the given constraints:

octave> sol = OptimalSolution4StackSlide_v2("costFuns", costFuns, "cost0", cost0, "TobsMax", TobsMax, "stackparamsGuess", refParams, "debugLevel", 1);
Completing stackparams of starting point ... done: {Nseg =   10.0, Tseg =   24.00 d, Tobs =  240.00 d, mCoh = 0.5    , mInc = 0.5    } : dCC0=+1e+01 : L0LIN=+7.01e+06
Running solver [Unconstrained]:   iteration = 07/10 [converged]: {Nseg =   50.6, Tseg =    5.07 d, Tobs =  256.49 d, mCoh = 0.075  , mInc = 0.52   } : dCC0=-7e-01 : L0LIN=+3.91e+06 ==> FEASIBLE!
Running solver [TobsMax]:         iteration = 05/10 [converged]: {Nseg =   32.1, Tseg =    8.00 d, Tobs =  256.49 d, mCoh = 0.12   , mInc = 0.41   } : dCC0=-4e-03 : L0LIN=+5.19e+06 ==> FEASIBLE!
==============================
--> Best solution found: [TobsMax]: {Nseg =   32.1, Tseg =    8.00 d, Tobs =  256.49 d, mCoh = 0.12   , mInc = 0.41   } : dCC0=-4e-03 : L0LIN=+5.19e+06
==============================