Previous: SensitivityDepthStackSlide()
, Up: Continuous-Wave Functions [Contents][Index]
OptimalSolution4StackSlide_v2()
OptimalSolution4StackSlide_v2()
finds the optimal setup of a continuous gravitational-wave search, under the constraint of fixed computational cost.
The computational cost of a continuous gravitational-wave search is given by a function; the following example is based on the Einstein@Home search for Cassiopeia A using LIGO S6 data:
octave> UnitsConstants; octave> costFuns = CostFunctionsDirected("fmin", 120, "fmax", 1000, "tau_min", 300 * YRSID_SI, "detectors", "H1,L1", "coh_duty", 0.53375, "resampling", false, "coh_c0_demod", 7.4e-8 / 1800, "inc_c0", 4.7e-9, "lattice", "Zn", "boundaryType", "EaHCasA"); octave> cost0 = 3.1451 * EM2014; octave> TobsMax = 256.49 * DAYS;
Given a starting guess:
octave> refParams.Nseg = 10; octave> refParams.Tseg = 24 * 86400; octave> refParams.mCoh = 0.5; octave> refParams.mInc = 0.5;
OptimalSolution4StackSlide_v2()
iteratively converges to the optimal solution under the given constraints:
octave> sol = OptimalSolution4StackSlide_v2("costFuns", costFuns, "cost0", cost0, "TobsMax", TobsMax, "stackparamsGuess", refParams, "debugLevel", 1); Completing stackparams of starting point ... done: {Nseg = 10.0, Tseg = 24.00 d, Tobs = 240.00 d, mCoh = 0.5 , mInc = 0.5 } : dCC0=+1e+01 : L0LIN=+7.01e+06 Running solver [Unconstrained]: iteration = 07/10 [converged]: {Nseg = 50.6, Tseg = 5.07 d, Tobs = 256.49 d, mCoh = 0.075 , mInc = 0.52 } : dCC0=-7e-01 : L0LIN=+3.91e+06 ==> FEASIBLE! Running solver [TobsMax]: iteration = 05/10 [converged]: {Nseg = 32.1, Tseg = 8.00 d, Tobs = 256.49 d, mCoh = 0.12 , mInc = 0.41 } : dCC0=-4e-03 : L0LIN=+5.19e+06 ==> FEASIBLE! ============================== --> Best solution found: [TobsMax]: {Nseg = 32.1, Tseg = 8.00 d, Tobs = 256.49 d, mCoh = 0.12 , mInc = 0.41 } : dCC0=-4e-03 : L0LIN=+5.19e+06 ==============================